
Jesse Bowes
CSCI-5828
Spring 2012

Jenkins Continuous Build System

Executive summary
�  Continuous integration systems are a vital part of any Agile

team because they help enforce the ideals of Agile
development

�  Jenkins, a continuous build tool, enables teams to focus on
their work by automating the build, artifact management,
and deployment processes

�  Jenkins’ core functionality and flexibility allow it to fit in a
variety of environments and can help streamline the
development process for all stakeholders involved

Agenda
�  Continuous Integration (CI)

�  What is it?
�  What are the benefits?
�  Continuous Build Systems

�  Jenkins
�  What is it?
�  Where does it fit in?
�  Why should I use it?
�  What can it do?
�  How does it work?
�  Where is it used?
�  How can I get started?

�  Putting it all together
�  Conclusion
�  References

CI - Defined
�  “Continuous Integration is a software development practice

where members of a team integrate their work frequently,
usually each person integrates at least daily - leading to
multiple integrations per day. Each integration is verified by
an automated build (including test) to detect integration
errors as quickly as possible” – Martin Fowler

CI – What does it really mean?
�  At a regular frequency (ideally at every commit), the system

is:
�  Integrated

�  All changes up until that point are combined into the project

�  Built
�  The code is compiled into an executable or package

� Tested
�  Automated test suites are run

� Archived
�  Versioned and stored so it can be distributed as is, if desired

� Deployed
�  Loaded onto a system where the developers can interact with it

CI - Workflow

Code
Repository

Developers

Continuous
Build System

Artifact
Repository

Test
Reports

Deployment

Source & Tests

Regular
Interval Executable/

Package

Testing Results

CI – Benefits
�  Immediate bug detection
�  No integration step in the lifecycle
�  A deployable system at any given point
�  Record of evolution of the project

CI – The tools
�  Code Repositories

�  SVN, Mercurial, Git

�  Continuous Build Systems
�  Jenkins, Bamboo, Cruise Control

�  Test Frameworks
�  JUnit,Cucumber, CppUnit

�  Artifact Repositories
� Nexus, Artifactory, Archiva

Jenkins
�  Branched from Hudson
�  Java based Continuous Build System
�  Runs in servlet container

� Glassfish, Tomcat

�  Supported by over 400 plugins
�  SCM, Testing, Notifications, Reporting,

Artifact Saving, Triggers, External
Integration

�  Under development since 2005
�  http://jenkins-ci.org/

Jenkins - History
�  2005 - Hudson was first release by Kohsuke Kawaguchi of

Sun Microsystems
�  2010 – Oracle bought Sun Microsystems

� Due to a naming dispute, Hudson was renamed to Jenkins
� Oracle continued development of Hudson (as a branch of the

original)

Jenkins – Fitting in

Code
Repository

Developers

Artifact
Repository

Test
Reports

Deployment

Source & Tests

Regular
Interval Executable/

Package

Testing Results

Why Jenkins? Flexibility!
�  Jenkins is a highly configurable system by itself
�  The additional community developed plugins provide even

more flexibility
�  By combining Jenkins with Ant, Gradle, or other Build

Automation tools, the possibilities are limitless

Why Jenkins? Award winning!
�  InfoWorld Bossies Award, 2011

�  O'Reilly Open-Source Award, 2011

�  ALM&SCM, SDTimes 100, 2010, 2011

�  GlassFish Community Innovation Award 2008

�  Duke's Choice Award 2008

Why Jenkins? Free/OSS
�  Jenkins is released under the MIT License
�  There is a large support community and thorough

documentation
�  It’s easy to write plugins
�  Think something is wrong with it? You can fix it!

What can Jenkins do?
�  Generate test reports
�  Integrate with many different Version Control Systems
�  Push to various artifact repositories
�  Deploys directly to production or test environments
�  Notify stakeholders of build status
�  …and much more

How Jenkins works - Setup
�  When setting up a project in Jenkins, out of the box you have

the following general options:
� Associating with a version control server
� Triggering builds

�  Polling, Periodic, Building based on other projects
�  Execution of shell scripts, bash scripts, Ant targets, and Maven

targets
� Artifact archival
�  Publish JUnit test results and Javadocs
�  Email notifications

�  As stated earlier, plugins expand the functionality even
further

How Jenkins works - Building
�  Once a project is successfully created in Jenkins, all future

builds are automatic
�  Building

�  Jenkins executes the build in an executer
�  By default, Jenkins gives one executer per core on the build server

�  Jenkins also has the concept of slave build servers
�  Useful for building on different architectures
�  Distribution of load

How Jenkins works - Reporting
�  Jenkins comes with basic reporting features

� Keeping track of build status
�  Last success and failure
�  “Weather” – Build trend

�  These can be greatly enhanced with the use of pre-build
plugins
� Unit test coverage
� Test result trending
�  Findbugs, Checkstyle, PMD

Jenkins by example – Main Page

�  The main page provides a summary of the projects
�  Quick view of

� What’s building (“No builds in the queue”)
�  Build Executor Status (both “Idle”)
�  Status of the projects

Jenkins by example – Project Status
�  Project status pages provide more details about a given

project
� The status of the last several builds
� Charting (depending on plugins)
� Dependencies

Jenkins by example – Project Status

Jenkins by example – New Project

Enhancing Jenkins
�  Jenkins plugin system can enable a wide range of features including (but certainly not

limited to)
�  SCM

�  Mercurial, Git, Subversion
�  Testing

�  Selenium, Windmill, TestLink
�  Notifications

�  IRC, Twitter, Jabber
�  Reporting

�  Doxygen, PMD, Findbugs
�  Artifact Saving

�  Artifactory, Amazon S3, SCP
�  Triggers

�  Jabber, Directory Watchers
�  External Integration

�  GitHub, Bugzilla, JIRA
�  And most importantly – The CI Game

�  A points based game where developers compete against each other to develop the most stable, well-
tested code

Who uses Jenkins?

Running Jenkins yourself
�  Jenkins is packaged as a WAR, so you can drop it into whichever servlet

container you prefer to use
�  Jenkins comes pre-packaged with a servlet if you just want a light-

weight implementation
�  Native/Supported packages exist for

�  Windows
�  Ubuntu/Debian
�  Redhat/Fedora/CentOS
�  Mac OSX
�  openSUSE
�  FreeBSD
�  OpenBSD
�  Solaris/OpenIndiana
�  Gentoo

Running Jenkins yourself – Updates
�  Jenkins has two release lines

�  Standard releases
�  Weekly bug fixes and features

�  Long-Term Support releases
�  Updates about every 3 months
�  Uses a “Stable but older” version from the standard release line
�  Changes are limited to backported, well-tested modifications

Letting someone else run Jenkins
�  There are also cloud-based solutions that can provide a

Jenkins instance
� Cloudbees - http://www.cloudbees.com/
�  ShiningPanda - https://www.shiningpanda.com/

Tying it into Agile
�  For an Agile team, Jenkins provides everything needed for a

robust continuous build system
�  Jenkins supports Agile principles by constantly providing

access to working copies of software
�  Jenkins’ extensibility allows the system to adapt to many

different pre-existing environments

Putting it all together
�  While an integral part of a CI system, Jenkins is by no means

the only component
�  In order for a CI system to function, a common repository

for the codebase needs to exist
�  A database of artifacts needs to exist, so deliveries can be

made at past iterations
�  The last step in a CI process is the deployment of the

components built
�  …and none of this matters if the developers don’t use the

system; procedures need to ensure the system is used as
intended

Conclusion
�  Continuous integration is a necessity on complex projects

due to the benefits it provides regarding early detection of
problems

�  A good continuous build system should be flexible enough to
fit into pre-existing development environments and provide
all the features a team expects from such a system

�  Jenkins, a continuous build system, can be an integral part of
any continuous integration system due to it’s core feature set
and extensibility through a plugin system

References
�  Continuous Integration – Martin Fowler

�  http://www.martinfowler.com/articles/continuousIntegration.html
�  Hudson

�  http://hudson-ci.org/
�  Hudson Continuous Integration Server

�  http://www.code-magazine.com/articleprint.aspx?quickid=0906071&printmode=true
�  The Hudson Book

�  http://www.eclipse.org/hudson/the-hudson-book/book-hudson.pdf
�  Jenkins

�  https://wiki.jenkins-ci.org
�  Monkey Image

�  http://corrines-corner2006.blogspot.com/2011/09/freebie-monday_26.html
�  What is Continuous Integration

�  http://confluence.public.thoughtworks.org/display/CCNET/What+is+Continuous
+Integration

